Sample Paper 2014: Paper 2

Question 6A (25 marks)

Explanation:
Proof by contradiction is a form of proof that establishes the truth or validity of a proposition by showing that the proposition being false would imply a contradiction.

Example:

Prove $x+\frac{1}{x} \geq 2$ for all $x>0, x \in \mathbb{R}$.
To prove this let's assume it is false, i.e $x+\frac{1}{x}<2$ for all $x>0, x \in \mathbb{R}$.
$x+\frac{1}{x}<2$
$x^{2}+1<2 x$
$x^{2}-2 x+1<0$
$(x-1)^{2}<0$ [This statement is false for all values of x.]
This is a contradiction.

Question 6B ($\mathbf{2 5}$ marks)

$O E C D$ is a cyclic quadrilateral because its opposite angles add up to 180°.
$|\angle O E C|+|\angle O D C|=90^{\circ}+90^{\circ}=180^{\circ}$
It follows that the other pair of opposite angles also add up to 180° as the four angles in a quadrilateral add up to 360°.

Cyclic Quadrilaterals
A cyclic quadilateral is a four sided figure whose vertices lie on a circle.
Opposite angles of a cyclic quadrilateral add up to 180°.

$$
\begin{aligned}
& \angle A+\angle C=180^{\circ} \\
& \angle B+\angle D=180^{\circ}
\end{aligned}
$$

Conversely, if the opposite angles of a quadrilateral add up to 180° then it is a cyclic quadrilateral.

Angles standing on the same arc in a Circle
Angles 1 and 2 are standing on the same arc $[A B]$.

Angles standing on the same arc are equal.
$\therefore|\angle 1|=|\angle 2|$.

$|\angle D O C|=|\angle D E C|[$ Both angles are standing on arc [DC]]

